IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

569

Learning Linear Gaussian Polytree
Models With Interventions

Daniele Tramontano

Abstract—We present a consistent and highly scalable local
approach to learn the causal structure of a linear Gaussian
polytree using data from interventional experiments with known
intervention targets. Our methods first learn the skeleton of the
polytree and then orient its edges. The output is a CPDAG
representing the interventional equivalence class of the poly-
tree of the true underlying distribution. The skeleton and
orientation recovery procedures we use rely on second order
statistics and low-dimensional marginal distributions. We assess
the performance of our methods under different scenarios in syn-
thetic data sets and apply our algorithm to learn a polytree in
a gene expression interventional data set. Qur simulation stud-
ies demonstrate that our approach is fast, has good accuracy
in terms of structural Hamming distance, and handles problems
with thousands of nodes.

Index Terms—Causal discovery, interventions, linear structural
equation model, polytrees.

I. INTRODUCTION

HE DOMINANT approach in recent literature on causal

discovery from interventional data is optimization of a
model score. Although the scoring is straightforward in the
sense that the optimization over DAGs refers to fully spec-
ified joint models for all observational and interventional
data, the optimization landscape is very high-dimensional,
making score-based algorithms infeasible for graphs with
hundreds/thousands of nodes that are common in biological
applications. This makes causal discovery difficult, in addi-
tion to many other challenges that remain such as departing
from restrictive genericity assumptions on the underlying dis-
tributions and developing methodology for high-dimensional
settings. In this article, to address these challenges, we depart
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from a score-based strategy and leverage special properties
of polytrees to obtain a highly scalable “local” approach that
learns from low-dimensional marginals.

Our methods yield fast and consistent algorithms to learn
linear Gaussian polytrees from interventional data. The skele-
ton is learned by aggregating pairwise correlations from
different experimental settings; edge orientations are found
by testing pairwise regression coefficients on suitable sub-
sets of the data. This removes the need to form a score
that contemplates joint models for all data. Moreover, we
allow the intervention targets to be arbitrary subsets (with no
variable always intervened upon). We are not aware of any
other work with these features. While it will be interesting to
seek extensions to broader classes of graphs in future work,
we stress that for very high-dimensional problems (e.g., [1])
it is of interest to target simpler computationally tractable
objects that may be inferred reliably with moderate sample
size [2]. For this reason, polytrees have received renewed
interest.

II. RELATED WORK

Directed acyclic graphs (DAGs) have been extensively used
in causal modeling; the nodes of a graph represent the ran-
dom variables of the model while the directed edges represent
causal effects from source to sink. The effects of the parent
nodes on the children are quantified by structural equations.
Causal discovery is then the problem of inferring the graphical
structure underlying the model.

Approaches for causal discovery using only observational
data and under the assumption that all variables in the
model are directly observed/measured, include constraint-
based, score-based and hybrid methods (e.g., PC-algorithm
[3], Greedy Equivalent Search (GES) [4], Greedy SP algo-
rithm [5]). Without extra assumptions on the data generating
process, these methods learn a completed partially directed
graph (CPDAG), a mixed graph that encodes the causal
information common to all the members of a Markov equiv-
alence class (MEC). Classical constrained-based algorithms,
such as the PC algorithm, can suffer from the elevated num-
ber of conditional independence tests that are needed to learn
the CPDAG. A recent line of work [6], [7], [8], which has
proven to be almost optimal in terms of the number of con-
ditional independence tests performed and is also applicable
in the presence of unobserved variables, exploits the idea of
learning the graph recursively starting from Markov boundary
information.
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Learning only the CPDAG is not always satisfactory as
DAGs in the same MEC can have opposite causal inter-
pretations. However, using additional assumptions such as
non- Gaussianity [9] and/or non-linearity [10] it is possi-
ble to identify the complete causal structure. Whenever these
assumptions do not apply, such as in the linear Gaussian case,
additional data from interventional experiments can help to
improve the identifiability of directed edges by refining the
MEC. This refinement is quantified in terms of interventional
Markov equivalence classes (Z-MECs) [11]. An Z-MEC is
a collection of DAGs that entails the same interventional
distributions for a fixed choice of intervention targets Z.

Within the causal discovery methods that use interven-
tional data, there are those in which intervention targets
are known such as Greedy Interventional Equivalent Search
(GIES) [12], Interventional GSP (IGSP) [13], and Joint
Causal Inference [14]. Other methods accommodate for
unknown interventions targets, for instance Differentiable
Causal Discovery with Interventions (DCDI) [15], permutation
based approaches [16], and Bayesian Causal Discovery with
unknown Interventions (BaCaDI) [17]. For a recent review of
causal discovery methods we refer the reader to [18], [19].

In this paper, we address the problem of causal discovery
when both observational and interventional data are avail-
able and all variables are measured. Our focus is on linear
Gaussian structural causal models in which the graph is a
polytree and the intervention targets are known. As shown
computationally in [20], the polytree assumption provides an
effective compromise between computational complexity and
model expressiveness. This property of polytrees has been
effectively exploited in image segmentation [21], hardware
optimization [22], and Ozone prediction [23]. The polytree
assumption follows a recent paradigm in the causal discov-
ery literature in which assumptions are made about the DAG
underlying the causal model in order to reduce the complexity
of learning algorithms. Other methods that follow a simi-
lar approach include the causal additive trees (CAT) method
which assumes the underlying DAG is a tree [24] and the
method from [25] which incorporates side information such as
the assumption that the ground truth is a diamond free graph
or that an upper bound on the clique number of the graph is
known.

The polytree assumption has been studied since the early
days of causal reasoning theory. Indeed, [26] use the Chow-
Liu algorithm [27] to learn the skeleton of a polytree. Different
variants of the Rebane and Pearl approach that work under dif-
ferent sets of assumptions have been developed in [28], [29],
[30], a linear programming algorithm is developed in [31],
while in [32] the graph is assumed to be locally a poly-
tree around a targeted node allowing to infer the directed
causes of the target node. Both [33], in the context of time
series graphs, and [34] in the context of classical graphical
models, introduce a notion of minimality for polytrees with
hidden nodes and provide an algorithm for learning the graph
under the assumption of minimality. Polytree learning has been
proven to be an NP-hard problem in [35], the complexity of
the problem is studied in full details in [36]. In [37], a com-
plete characterization is given for the constraints that emerge
between 2nd and 3rd order moments of a random vector that
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follows a polytree-based linear structural equation model with
non-Gaussian error terms.

III. PRELIMINARIES
A. Notation for Graphs

A directed graph is a pair G = (V, E), where V is the set
of vertices and £ C {(u,v) : u,v € V, u # v} is the set of
directed edges. We denote a pair (¢, v) € E also by u — v. A
walk from node v to node w in G is an alternating sequence
(vo, e1,v1, €2, ..., Vk—1, €k, Vi) consisting of nodes and edges
of G such that vo = v, vy = w, and ¢; € {(vi_1, V1), (v;, vi—1)}
forl=1,...,k A walkis a directed path if e; = (vi—1, v;) for
all i e {1, ..., k} and a directed cycle if additionally vy = vy.
From now on we assume that the graph G is a DAG (directed
acyclic graph), i.e., G does not contain any directed cycles.

A node v; is a collider on a walk as above if ¢;_1 = (v;—1, V)
and e; = (vi+1, v;). Moreover, v; is an unshielded collider if
neither (vi—1, vi+1) or (vi41, vi—1) belongs to E.

A walk that does not contain a collider is called a trek from
v to w. Every trek contains a unique node v; that splits the
trek into two directed paths from v; to v and from v; to w,
respectively. This node is the fop of the trek. Note that the top
may be equal to v or w, in which case one of the two directed
paths is trivial consisting of a single node and no edge. A trek
is simple if it does not contain repeated nodes.

If u > v € E, then u is a parent of v, and v is a child
of u. If G contains a directed path from u to v, then u is
an ancestor of v and v is a descendant of u. The set of par-
ents, children, ancestors, and descendants of u are denoted by
pa(u), ch(u), an(u), de(u), respectively. The skeleton of a DAG
is the undirected graph obtained by replacing each edge (u, v),
by an undirected edge, denoted here by {u, v}.

A mixed graph is a triple G = (V,E,U), where E is
the set of directed edges defined as above, and U C E C
{{u,v} : u,v € V, u # v} is the set of undirected edges. We
assume all the graphs we consider to be simple, i.e., there is
at most one edge, directed or undirected, between any two
vertices.

B. Linear Structural Causal Models

Let X = (X,,)uev be a random vector indexed by the vertices
of a DAG G. For A C V, let X4 = (Xy)uca.- When Xy is
conditionally independent of Xp given X¢ for disjoint subsets
A,B,C C V, we write A 1l B|C. The joint distribution of
X satisfies the local Markov property with respect to G if
{i} 1L [p]\ (pa(d) U de(i)) | pa(d) VY i € [p]. The Markov
equivalence class of G is the set of all DAGs that encode the
same conditional independence relations, i.e., for which the
set of distributions satisfying the local Markov property is the
same. See [38, Ch. 1] for further details.

The Gaussian structural causal model given by G postulates
that

X, = Z Ay Xy + &y, vev, (D

wepa(v)
where the edge coefficients A,, € R are unknown parameters

and the errors (&,),cy are independent Gaussian random vari-
ables. Each error is assumed to have mean zero and unknown
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variance w, > 0; in symbols, &, ~ N'(0, w,). Let A € RV*V
be the matrix of edge coefficients, with zeros filled in at
non-edges. Let Q = diag((wy)yev) € RY*V be the diagonal
covariance matrix of ¢ = (&,),cy. Solving (1), we obtain that
X = (I— A7)~ !¢ is a Gaussian random vector with covariance
matrix

Y:=Var[X] = I— AT)_IQ(I — A)_l, (2)

we stress that the matrix (I — A) is always invertible when
the graph G is acylic, this is because the matrix A is strictly
lower triangular, so the determinant of (I — A) is one.

As presented, X is modeled to have mean zero. This is
without of loss of generality for the later results which solely
pertain to the covariance structure. In the sequel, we denote
the space of matrices supported on the edge set of G as

RE={AeR"Y: (nw) ¢ E = A,, =0}

We write D, for the set of diagonal matrices in RV*V with
positive diagonal entries. The covariance model induced by
the DAG G is the set of positive definite matrices

M(G) = {(I—AT)_IQ(I—A)_l . A e RE, QeD+}.

Two graphs G; and G, are Markov equivalent if and only if
M(G) = M(G>) (see, e.g., [39, Th. 8.13]). Combinatorially,
the MEC is represented by its CPDAG [38, Ch. 1].

Writing explicitly the entries of the a covariance matrix X €
M(G) using Eq. (2), one can get two useful parametrizations
for the set M(G), we report the two parametrizations here, and
refer to [40] and the references therein for further details.

Proposition 1 (Trek-Rule): Let T (v,w) be the set of all
treks from v to w. The matrix ¥ from Eq. (2) has its entries

Yow = Z Wrop(t) 1_[)»6, vwweV.

€T (v,w) €€t

Moreover, the entries of ¥ satisfy the recursive relation

Yy = Z Ztop(r),top(ﬂc) l_[)\e: vwevV,

eS,w) =4

where S(v, w) is the set of simple treks from v to w.

Let ¥ = (oy,) be the covariance matrix of a random
vector X, with diagonal entries o, > 0. The correlation
matrix R(X) = (pww) of X is the matrix with entries
Pvw = Ovw/+/OwOww. It is also the covariance matrix of the
standardized random vector (X,/\/0w)vev.

Proposition 2 (Correlation Matrices): If ¥ is a covariance
matrix in M(G), then its correlation matrix R(X) is also in
M(G). Hence, there exists A = (A,,,) € RE such that

R(Z)pw = Z ]_[xe, v,weV.

teS(v,w) €€T

Proof: Write & = I—A)"TQ'0I—A)~! for A’ € RE and
Q' € Di. Then R(Z) = (I — AD)™1'QI — A)~!, where the
entries of A € RE are A,y = Al,v/Zy/+/Zyw and those of
Qe Dy are Q,, = Q),/Zy,.

The second assertion follows from the simple trek-rule in
Proposition 1, observing that R(X),, = 1 for all v. [ |

C. Interventions

It is useful to formally consider the collection of linear
Gaussian structural causal models that arise from G and a
set of interventions. In a soft intervention, a subset I C V
of target nodes is selected, and for each v € [ the condi-
tional distribution of X, given Xp,() is modified. When X, is
made independent of its parents, the intervention is perfect.
It is common that different interventions are performed and
hence we have a collection of intervention targets denoted
by Z, so Z < 2Y. Without loss of generality we assume
that ¥ € 7 and refer to this as the observational experiment.
[11, Th. 3.14] justifies this assumption, which subsumes the
case of conservative intervention targets treated by [12].

We assume that each interventional experiment obeys a lin-
ear Gaussian structural causal model defined by G (recall
Section III-B). Namely, for each I € Z, we have a random
vector X! = (Xél))vev with structural equations

1 Iy (I 1
XO = 3 AOXD el
wepa(v)

veV. 3)

We use A to denote the matrix of edge coefficients for this
model and Q¥ = diag((wy))vev) to denote the covariance
matrix of the Gaussian vector ¢ := (851))%‘/. To encode the
invariances of the structural equations of nodes that are not
intervened on, i.e., are not in /, we impose that )Livl\), = ,\5?3
and a)y) = a)&”) whenever v ¢ I. Each I induces a covariance

model
MG, D) ={2D: AD e RE, QD e D}

where =0 = (I — (ADY)=1QD (@ — ADY=1 gpg AD QWD
satisfy the invariances, on edge coefficients and error vari-
ances, of nodes that are not intervened on.

The interventional DAG model specified by G and the set
of intervention targets Z is the set

Mz(G) = {(zm),d : 2D e M(G, D), € I];

it consists of tuples of covariance matrices of length |Z| that
may arise by performing interventions according to Z.

Two DAGs Gi, G are in the same Z-Markov equivalence
class, Z-MEC, if and only if M7(G1) = M7(G>). To decide
if two DAGs are in the same Z-MEC, Yang et al. [11] introduce
the notion of an Z-DAG:

Definition 1 (Z-DAG): Fix a collection of interventions Z
and a DAG G, the Z-DAG G7 is the graph G augmented with
Z-vertices {{r}p1e7, and the Z-edges {{1 — u}uer 17

The following theorem provides a concise graphical repre-
sentation of the Z-Markov equivalence classes.

Theorem 1 [11, Th. 3.14]: Let I be a conservative set of
intervention targets. Two DAGs Gy, G> are in the same Z-

MEC iff for all I € 7 the Z-DAGs GIZ’ and Gg’ have the same
skeleton and the same v-structures, where
I = (M U{IUJY jeT.its-

The Z-MEC of a DAG G can be represented uniquely by its
T-CPDAG, this provides a combinatorial representation of the
causal information that we can extract from the interventional
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data available, often also referred to as the Z-essential graph
in the literature. This is a mixed graph with the same skeleton
as G, a directed edge, (u,v), if every member of the Z-MEC
has that edge with the same orientation, and an undirected
edge, {u, v}, if there are two DAGs in the Z-MEC for which
that edge has opposite orientations. See Hauser and Biihlmann
[12, Th. 18] for details in the setting of perfect interventions,
the same construction carries over to the setting of general
interventions [11].

IV. LEARNING CAUSAL MODELS ON POLYTREES WITH
INTERVENTIONS

From now on we assume that the DAG G is a polytree, this
means that the skeleton of G is a tree, i.e., a graph in which
there is exactly one path between any two nodes.

Our procedure first learns the skeleton. For this purpose we
create a novel interventional version of the Chow-Liu algo-
rithm [27]. The challenge here lies in constructing a weight
matrix that reveals the tree structure, the same way the cor-
relation matrix on a single observational data set does. As
seen in Appendix C, Fig. 2, taking simply the correlation
matrix of the pooled data does not work. Thus, we introduce
the notion of a G-valid weight matrix that suitably captures
the tree structure. We will construct G-valid weight matrices
by aggregating correlation matrices. The aggregation does not
necessarily produce a correlation matrix, yet we show that this
approach yields a consistent procedure to learn the skeleton in
low- and high-dimensional settings. The approach is detailed
in Section I'V-A. Its consistency is discussed in Appendix A-A.

To determine the orientation of the edges we propose
and compare several methods described in Sections IV-C
and IV-D; their consistency is discussed in the Appendix
A-B. Importantly, all procedures use only correlations and
low-dimensional marginal distributions that are efficiently
estimable in a low sample regime, see e.g., the concentration
inequality given in [41, Corollary 1] in which it is explicit that
the effective sample size decreases as the size of condition-
ing set increases requiring more samples to achieve the same
accuracy in the estimation.

A. Learning a Skeleton

In seminal work, Rebane and Pearl [26] proved that when
a distribution satisfies conditional independence constraints
induced by a polytree, then the skeleton of the tree can be
recovered using the algorithm for the maximum weight span-
ning tree of Kruskal [42], with weight matrix given by the
mutual information between the variables. Notably, the only
property of mutual information needed in this algorithm is
the data processing inequality [43, Th. 2.8.1]. This implies
that Kruskal’s algorithm finds the correct polytree skeleton
any time the weight matrix that is used respects the following
condition.
Definition 2: Given a polytree G, a weight matrix W €
RP*P is G-valid if for every triplet u —v —w in G
min{W(u, v), Wy, w)} > W(u, w). “)

If all inequalities in (4) are strict, then W is strictly G-valid.
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Lemma 1 [26, Th. 1]: If W is strictly G-valid, then the
maximum weight spanning tree of the complete graph over V
with weight matrix W is the skeleton of G.

In a polytree G there is at most one trek between any two
vertices. In particular for any triple # — v — w, the only pos-
sible trek between u and w is the one involving also v, so
from Proposition 2 we have that |p, | =0if u —v—-—wisa
collider triple and |py,w| = |Pu,v||pv,w| otherwise. In particu-
lar, the absolute (observational) correlations define a G-valid
weight matrix that is strictly G-valid if G is causally minimal.
Similarly, for each I € Z, the associated absolute correlation
matrix |R!| is a G-valid weight matrix.

To efficiently learn from available interventional data,
we wish to form a single weight matrix that encodes the
information of all the experimental settings. To this end, we
use an aggregation function A : (RP*P)Zl — RP*P that takes
a collection of G-valid weight matrices and outputs a strictly
G-valid matrix. One way of obtaining such a function A is to
apply the same order-preserving transformation a : RZl —
R to each vector of correlations (pi}», . ..,,ol!jIl). By order-
preserving, we mean that a(xp, ..

Sxz) < al, .. yI)
anytime x; < y; for i 1,...,|Z] . Possible choices for a
are:

) alpf.... P ) = = Yyer §log(l = (o).}

2) Weighted mean,

3) Weighted median,
where nj is the size of the dataset / and the weights we refer
to for the mean and the median are Z"’n -

The output of Kruskal’s algorithm is the same for any
strictly G-valid matrix W. In practice, however, we work with
an estimate W and different aggregation functions can give
different results. We discuss the numerical performance of the

three aggregation functions in Section V-A.

B. Identifiability of Edge Orientations

The output of our learning methods is an Z-CPDAG
(Section III-C) whose construction simplifies for polytrees.
The next definition singles out the edge directions that can
be identified in a polytree. Notice that in a polytree there is
only one path between two vertices, thus all the colliders are
unshielded.

Definition 3: An edge u — v € G is Z-directly-identifiable
if it is either part of a collider, or there exists / € Z such
that |[I N {u,v}|] = 1. It is Z-identifiable if it is either Z-
directly-identifiable, or there is an edge w — u € E that is
T-identifiable.

Proposition 3: The Z-CPDAG of G is the partially directed
graph that has the same skeleton of G, and whose directed
edges are the edges of G that are Z-identifiable.

It is clear from Definition 3 that once we have computed
the skeleton of the polytree, the Z-CPDAG can be identified
by searching the Z-directly-identifiable edges first. Then, once
we have a triple of the form u — v — w we can orient v — w
testing if the triple forms a collider. In the next sections we
describe different orientiation strategies: Section I'V-C focuses

IThis is well defined for absolute correlations in [0, 1).
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on single edge orientations, and Section IV-D focuses on find-
ing colliders. Searching for one type of Z-directly-identifiable
edge or the other first does not matter on a population level.
However, it can make a difference when working with data due
to approximation errors inherent to each possible approach. A
comparison of performance between these approaches is given
in Appendix C-3.

Hereafter, X, X! denote vectors of observed values of the
variables X,,, X, in the interventional setting / € Z. Entrywise,
X, =&, ..., XL, and X[ = X[ |,...,X] ). The total
sample size is then n := ) ;.7 n;. Fix Z and an edge {u, v},
we define

L, ={Iel:vé¢l}
Liv={el:vel,u¢l},
Livyv={Uel:uve¢l}
Tuy =€l :uelv¢l}

C. Learning Single Edge Orientations

1) Invariance of Regression Coefficients (IRC): To orient
the edge {u, v}, we assume there exists Iy € Z where no inter-
vention took place, i.e., I[p = @. Fix I € Z,, ;. If the true model
is u — v, then an intervention on u does not change the regres-
sion coefficient of X! = AL X! + €l e/ ~ N(0, oy),). Namely,
AL, =A% Thus to orient the edge {u, v} we test the hypothesis
H:al, =AY . There are different options for the choice of this
test and IRC testing has been used before in causal structure
learning [e.g., [44], [45]]. Here we use an F-test [46], which
is a modified version of the test statistic in [47] for the case
of unequal variances. We briefly present it here.

Let ¢, and e; denote the vectors of residuals of the regres-
sions X! = AlX1 + €0 and X! = 2L X! + ¢! respectively, and
let e denote the vector of residuals, which is obtained by pool-
ing the data sets (X2, X1°), (X!, X!). Under the null hypothesis

‘Hr.u—v the statistic is

(eTe — eITOe1O — eITeI)/k

(efyer, — efen/f

~ F(k,f)

ny, —k)&7 +nr—k)é1,)?
where k =2 and f = (((n’l(; — ki‘{(i‘)o +( (,;7 ,z)[%) .

For each I € Z,,; we test the hypothesis H; ,—., and reject
the orientation u — v in favor of v — u if the p-value of any
of these tests is below «/|Z, ;| for some chosen significance
level «. This test is possible whenever Z,, ; # 0.

In an analogous fashion, changing the roles of u, v, if Z;, ,, is
nonempty, we may perform a test for the orientation v — u.
If only one of the tests u — v or v — u is possible, then
the decision rule to orient the edge {u, v} is clear. In case both
tests are possible, we choose to reject the test with the smallest
p-value, as long as such p-value is below the corresponding
significance («a/|Zy ;| or a/|Zi|).

2) Single Edge BIC Score Before Collider Search: Let H;
and H; be any two parametric models with parameter spaces
M; c R and My C R and of dimensions d; and
dy, respectively. A model selection based on the BIC con-
sists of choosing the minimizer of the following penalized

log-likelihood

. d;
1M | Xn) = argming e pq, (= log(pa (Xa | 6) + 5 log(m), (5)

for i € {1, 2}, where X,, is the observed dataset of size n. For
more details on model selection and information criteria, we
refer the reader to [48, Ch. 2].

In our setting we want to select between the model in which
u — v € G and the one in which v — u € G, respectively
denoted as H,—., and H,_,,. The polytree assumption allows
us to compute the log likelihood using only information on
the marginal distribution of u# and v. We show in detail only
the derivation of the penalized log likehood for #H,_,,, since
the one for the other model is analogous.

Under the model H,_,, we can write in each dataset X, =

)L,I”Xu + eﬂ‘u where, using Eq. (3), we can see that
au= 2. MxP+e ~NO o)), ©
wepa(v)\{u}
ha= X G20 4ol )

wepa(v)\{u}

a consequence of the polytree is assumption is that X, is inde-
pendent from all the other parents of v, and so it is independent
from €,|, as well. This allows us to rewrite the log-likelihood
of a observed pair (X! X£ ;) as

NA

I 2
vu

1 2 1
—log2m — Elogau — Eloga

2 2
(X)) (X MLXL)
20,52 207 2

viu

The log-likelihood for the whole dataset is then

—nlog 2w + Z ( — %log 052 _ %loga‘f‘uz
I1eT
1 2 1 1 \2
. (Xu,i) . (Xv,i - )‘L,qu,i) ) (8)

12 12
2014 2avlu

Straightforward computations show that the MLEs for the vari-

ance parameters are the usual variances computed on each

dataset individually leading to
~2

1 2

1112 Al

Gu = ||Xu|| ) GVlM
ny

D T Al

ny

For the regression coefficients, since we know that they vary
only across the datasets in which v has been intervened upon,
it is not possible to find a closed form expression for the esti-
mator. To handle this, we tell apart the datasets in which v has
been intervened on from those in which it has not. Define A, ,
as the regression coefficient that is shared across the environ-
ments in which v has not been intervened on. Substituting (9)
into (8), the part of the log-likelihood that depends on the
regression coefficients becomes

ny ny
= 225 log X=Xy +) 5 log 1X[-2/X; |2
1€Z; 1€Z,
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Soif I € Z, then A = (XL-X!)/||X!||2, while A is given by the
solution of the 1-dimensional bounded optimization problem

argmax; gr_y 1] — Z—log ||X1 )LXI” (10)
IGI\;
For solving this problem, we find Brent’s method, see,

e.g., [49, Ch. 10.3], to work well in practice. Finally, note that
the dimension of the model, that is, the number of free param-
eters we need to optimize over, is 2|Z| 4+ 1 + |Z,|. Indeed, we
have two variance coefficients for each interventional dataset,
one regression coefficient for the datasets in which v has not
been intervened upon, and one regression coefficient for each
dataset in which v has been intervened on.

Remark 1: In this section we allow the marginal variances
oy and oy, to vary also in the datasets in which u and v are
not intervened upon. This is because the variance can change
also as a consequence of an intervention on an ancestor. A
precise likelihood computation would require to check for each
experiment if there are possible ancestors in the graph that
can affect the marginal variances, but this would be too com-
putationally expensive while giving little benefit in terms of
likelihood comparison. We discuss this aspect further in the
Appendix, Prop. A.4, where we also clarify that consistency
is not affected by the relaxation of the variance constraints.

3) Single Edge BIC Score After Collider Search: Let
G" = (V,EP) be the CPDAG associated to G and GY be
graph obtained from G* after removing all the oriented edges.
We can then work on each connected component of GV inde-
pendently. Let U be one of these components, and u — v be
one of its Z-directly-identifiable edges. If we orient the edge
from u to v then we would orient the remaining edges in U
in such a way that no other colliders appear. We now propose
a simple likelihood computation that takes this into account.

The choice of an orientation for the edges in U reduces to
the choice of a root vertex in it. If u is a vertex in U, then we
let HY denote the model in which u is the root. The likelihood
function for this model factorizes in a simple way since each
vertex has at most one parent. We can write the log-likelihood
of a datapoint as

logf(X!)) = logf(XL) + Zlogf (X 1X am)

vF#EU

where each of the summands can be maximized independently
from the others. This time the maximization is easier than
the one in Section IV-C2 because the variance parameters are
shared across all environments in which a node has not been
intervened upon. A closed form solution for this problem is

provided in [50] and is given by 8v2‘ pay) = =D iy v‘pa(v),

where ny = ) 1, and 6v1fpa(v) is the MLE of the conditional

6y pd(v)

variance in the dataset I, while A= . The dimension of

the model H,, is 1 + |Z,| + ZZV#M(I + II D.

D. Collider Search

1) BIC Score for Collider Search: If the skeleton has a
triplet u — v — w, we can decide whether it forms a col-
lider or not by testing for the independence of u and w in
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all the environments. Log-likelihood ratio statistics for a test
are provided by function 1 defined in Section (IV-A), applied
to x; = p,ﬁ)w. Here the difference in the dimension between
the model H,— <, and the other 3 models in which u and w
are not independent is |Z]|.

2) BIC Score for Collider Completion: Even though testing
for the independence of u# and w as in Section IV-D1 would
give a consistent procedure also in the case in which we have
already oriented # — v, in this case a more refined analy-
sis of the likelihood is possible. Indeed, here we can test the
model u — v — w against u — v < w. In the former case
the likelihood factorizes as f(X2)f(X!|X1)f (XL |X") and can be
maximized as in Section IV-C2. In the latter case it factorizes
as f(XDf (xXDyf(x?|xL, X1, and the MLE for A} = (Avlu, vlw)
in the environments in which v has been intervened upon is
given by the usual estimator E EVW »» While the common
regression coefficients for the env1r0nments in which v hasn’t
been intervened on ):v|u, ivw, is given by the solution of the
following 2 dimensional optimization problem:

n 1 1 12
argmax, ., c0.17 )~ 102 X[ =AupuXy =R X, |
I€Z;

The dimension of the model H,—y—, 1s 3|Z| 4+ |Zy| + |Z,y]| 2
while that of the model H,—,— is 2(2|Z| + |Z,| + 1).

E. Complete Orientation Procedures

We propose two procedures for the orientation. The pseu-
docode for each, including subroutines, is in Appendix B:
P.1 Compute the CPDAG using the collider search, then use
single edge orientation.
P2 Use single edge orientation first, then orient the rest of
the Z-CPDAG using the collider search.
These procedures differ in the amount of statistical vs. causal
information they extrapolate from data, with P.1 being the
more statistically oriented, while P.2 the more causally ori-
ented. Note that for the single edge orientation we can choose
between BIC (Section IV-C2) and IRC (Section IV-Cl1),
and to find colliders we can use the more general setting
of Section IV-D1 hereon referred to as “simple”, or the
more refined analysis of Section IV-D2 hereon referred to as
“refined”.

Whenever we use the orientation procedures involving a
BIC score, it is intended that we solve a local model selection
problem in the following way: we compute the MLE estimator
for the possible models (e.g., H,—, and H,_,, for the single
edge orientation) and then plug it into the likelihood function
to compute the maximum likelihood ﬁ, the BIC score of the
model H will be log(n) dim(H) — 210g(i), where n is the
sample size. Finally, we select the model with the highest BIC
score.

V. SIMULATION STUDIES

In this section we first assess the performance of the
different skeleton and orientation recovery procedures, then
we construct full versions of our algorithms to compare to
other methods. The setup for our simulations is explained in
Appendix C-A, the code is available at [51].
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k =1, 10, 20 nodes targeted per intervention, respectively. The aggregation function baseObs denotes a baseline with observational data only. The labels Itest,
mean, median indicate each of the procedures in the list in Section IV-A respectively.
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Orientation recovery with base parameters 500 nodes, 1000 samples and 10 intervention targets with 10 intervened nodes each. For all proposed

methods we see the convergence when the sample size increases. In this case increasing the number of datasets negatively affects the performance, this point

is disccused in Rem. 2.

A. Skeleton and Orientation Recovery

Fig. 1 shows the structural Hamming distance (SHD) in
skeleton recovery for the three aggregation functions intro-
duced in Section IV-A. The SHD is the minimum number
of edge additions, deletions and reversals necessary to trans-
form one graph into another. We see that the SHD decreases
for increasing number of samples, with little effect of the
number of datasets and the size of the intervention. Fig. 3 in

Appendix C-C. shows that the weighted mean is the fastest.
A more detailed analysis is contained in Appendix C-B.

Fig. 2 depicts the SHD in orientation recovery, conditional
on the skeleton being correct. Interestingly, the more refined
test proposed in Section IV-D2 gives no benefits compared to
the ones in Section IV-DI, and it is slower to compute. P.1
also performs better than P.2 in general. More details on the
orientation procedure in Appendix C-C.
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Fig. 3. Performance of our algorithm against different baselines in low- and high-dimensional settings on DAGs for random Erd6s-Rényi or Barabasi-Albert
graphs with p = 20, 500 nodes and expected number of edges per node e = 2. The observational sample sizes are respectively 100 and 48, the other samples
are evenly distributed in the interventional datasets. Notice that the y-axis for the plot on the right is in log-scale.

Remark 2: Notice that in the experiment shown in the
middle panels of Figs. 1 and 2, the overall sample size is fixed,
so increasing d significantly reduces the sample size in each
one of the datasets, resulting in a much more difficult learning
problem. This explains why the orientation procedures seem
to be negatively affected by the introduction of interventional
datasets.

B. Complete Algorithm

Although our focus is on causal discovery in high-
dimensional settings, for completeness, we compare the
performance of our full skeleton and orientation recovery pro-
cedures (Section IV-E) to the performance of GIES [12],
DCDI [15], BaCaDI [17] and IGSP [13] in low dimension
with simulations on DAGs with p = 20 nodes. The results are
summarized in Fig. 3 (left). We see that general algorithms
achieve a better accuracy, but this comes with a high price in
terms of running time that makes them infeasible for larger
graphs. We refer to Table II in Appendix C-E for a runtime
analysis.

For high-dimensional settings, to leverage accuracy and
fast computation, we construct our full algorithm using
either P.1 or P2 with mean as aggregation function, sim-
ple for collider search and IRC for single edge orientations.
Among the four algorithms from the literature considered
in Fig. 3 (left), the only one that would terminate in less
than 24h for DAGs with p 500 nodes is GIES [50].
Thus, we compare our two high-dimensional versions of
the algorithm with GIES only. The Fig. 3 (right) shows
the results of the simulations. We see in this setting that
our algorithm provides better accuracy in terms of structural
Hamming distance in addition to being considerably faster,

TABLE I
MEAN RUNTIME ON DAGS WITH 500 NODES AND DIFFERENT
NUMBER OF SAMPLES n CORRESPONDING TO FIG. 3

Runtime in seconds
Method n = 500 n = 1000 n = 2000
mean max | mean | max | mean | max
P1 8 12 8 13 8 13
P2 8 14 7.8 13 8 15
GIES 7960 | 14715 449 | 909 284 | 553

as the computation times in Table I indicate. Appendix C-E
contains an extensive comparison of our algorithm against
GIES.

To emphasize the point that our algorithms are able to retain
structural information of the original DAG, in both the plots in
Fig. 3 we added “SHD rand.” as baseline. This shows the SHD
between the Z-CPDAG of the true DAG and the Z-CPDAG
of randomly generated polytree. This baseline makes sure to
highlight that the better performance of our algorithms in
terms of SHD is not given by the sparsity structure of the
polytree. The distance from the result of our algorithm to
this baseline is a strong indication that even in a misspec-
ified setting where the generating graph is not a polytree,
our algorithms are still able to infer information about the
original DAG.

C. Protein Expression Data

We illustrate our algorithm on the well-known protein
expression dataset from [52]. Similar to [13], we pro-
cessed the dataset into one observational and five one-node
interventional datasets with 5846 samples of 11 nodes in
total. The CPDAG of the conventionally accepted model of
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TABLE 11
STRUCTURAL HAMMING DISTANCE TO THE CONSENSUS
7Z-CPDAG OF THE PROTEIN NETWORK FROM [52]

Method
P.1/P2 | GIES | IGSP | CAM | DCDI-G | DCDI-DSF
SHD | 15 38 18 35 36 33

the interactions between nodes serves as ground truth; this
consensus Z-CPDAG and the one estimated by our algorithm
can be found in the Appendix. Table II shows the SHD to the
consensus Z-CPDAG:; the statistics for the other algorithms are
taken from [15, Table 3]. Although the ground truth is a DAG
with 18 edges, our algorithm’s performance is comparable to
that of more general methods.

VI. CONCLUSION

We proposed an approach to learn linear Gaussian poly-
tree models from interventional data where the interventions
have known targets. Our two-step approach of first learning
the skeleton and then orienting the edges exploits the avail-
ability of interventional data at each step, all the while using
only local computations with low-dimensional marginals. We
emphasize that our methods are especially well suited for
the high-dimensional setting, with large graphs but moderate
sample size.

To conclude, we highlight topics that emerge as future
directions.

Unknown interventions: A natural extension of our work
is to allow for unknown intervention targets. Although the
skeleton recovery and collider search procedures apply in this
case, the remaining orientation subroutines do not because
they operate by searching Z-identifiable edges; this, in turn,
depends on the characterization of Z-Markov equivalence
which requires explicit knowledge of Z. The notion of
W-Markov equivalence, introduced in [53], for unknown inter-
vention targets appears to be a reasonable candidate to replace
the use of the Z-MEC. The reason being that the W-Markov
equivalence class (W-Markov EC) is a generalization of the
Z-MEC in this case [53, Appendix D].

Forests: We focused on connected polytrees, but a gen-
eralization to disconnected forests of polytrees would be of
interest. Undirected forests have been studied by [2], but their
construction does not carry over naturally to the directed case,
and new research is needed.

Hidden variables: The algorithms we propose do not
address the case where some variables remain hidden. For
purely observational data from a polytree model, the hidden
variable setting was considered by Sepehr and Materassi [34].
These authors provide necessary and sufficient conditions for
causal structure recovery of the polytree with hidden nodes.
It would be interesting to investigate to what extent interven-
tional data would improve the identifiability of the polytree
structure when such conditions are not met. Similar to the
unknown interventions case, a possible approach would be to
replace the Z-MEC by the W-Markov EC because its level of
generality encompasses hidden variables also.
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