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Abstract

We give a brief literature review on the main concepts of robustness in
deep learning and more detailed information on robust out-of-distribution
detection and robustness to semantic perturbations. We do not aim to
present the topics in their full depth, but to present the main concepts
and provide references for further reading. This reports is written for a
graduate student to quickly familiarize themselves with the topic.
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Disclaimer: robustness of black-box models is a very active research topic

and consistent terminology has not yet been established. Moreover, many dif-
ferent viewpoints on the main ideas and definitions are possible. Here, I will
present a view that I found intuitive.

0.1 Certified and Adversarial Robustness

Neural network classifiers have showed remarkable performance in image clas-
sification tasks on both train and test datasets. However, small additive per-
turbations indistinguishable to the human eye can easily fool these classifiers
into predicting false classes with high probabilities [29]. From a security point
of view, we would like to guarantee that networks are robust to these kind of
small perturbations.
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0.1.1 Definitions and Intuition

In the following, let Y denote the set of classes and ∥ · ∥ denote the euclidean
norm on Rn. Let f : Rn → [0, 1]|Y| be a soft classifier and h : Rn → Y : x 7→
argmaxc∈Y fc(x) be the corresponding hard classifier. Let x ∈ Rn and ϵ > 0.

Definition 1 (Robustness). We say h(x) ∈ Rn is robust with perturbation
budget ϵ if

h(x) = h(x+ δ) ∀δ ∈ Rn with ∥δ∥ < ϵ. (1)

If this is not the case, we call a point x+ δ that violates eq. (1) the adversary,
adversarial attack or adversarial example.

Since we want to evaluate the robustness in practice, we are interested in
verifying eq. (1). Clearly, robustness of a point x, i.e. eq. (1), is equivalent to
the optimization problem [24, Eq. (1)]

0 > max
∥δ∥<ϵ,c ̸=h(x)

fc(x+ δ)− fh(x)(x+ δ). (2)

Unfortunately, exactly solving problem (2) is an NP-complete problem [16,
Apdx. I]. Hence, verifying or certifying the robustness of a sample with any
computational certification method M(x, h, ϵ) is a challenging problem. To
make the certification computationally feasible, we usually use approximative
certification methods, which can eventually certify a sample, but cannot guaran-
tee that the sample cannot be certified at all (aka. soundness). This essentially
corresponds to computing upper bounds on the optimization problem of eq. (2)
and checking if the inequality holds, c.f. Section 0.1.2. On the other hand, a
computationally feasible approach is trying to find an adversary with an attack
model a(x, h, ϵ) = x + δ, that violates eq. (2). This essentially corresponds to
finding lower bounds on the optimization problem in eq. (2) and checking if the
inequality holds. We talk about certified robustness, if x can be certified by a
method M(x, h, ϵ) and we talk about adversarial robustness, if an attack model
a(x, h, ϵ) cannot find and adversarial attack. The term adversarial robustness,
however, is misleading since not being able to find an adversary with some at-
tack model does not imply that there exists no adversary, i.e. does not imply
robustness of the sample. We introduce simple metrics to measure adversarial
and certified robustness on a dataset.

Definition 2 (Adversarial Accuracy). Let D = {xi, yi}i=1,...,N be a dataset
and a(·, h, ϵ) : Rn → Rn be an attack model that tries to find an adversary
within the perturbation budget ϵ. Then, the adversarial accuracy of h on D
under attack a(·, h, ϵ) is

1

N

N∑
i=1

1(yi = h(a(xi, h, ϵ))) (3)

Definition 3 (Certified Accuracy). Let D = {xi, yi}i=1,...,N be a dataset and
M(·, h, ϵ) be a method that returns true if it can computationally certify the
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robustness of h(x) with perturbation budget ϵ. Then, the certified accuracy of
h on D under method M(·, h, ϵ) is

1

N

N∑
i=1

1(yi = h(xi) and h(xi) can be certified by M(·, h, ϵ)). (4)

Some papers omit the yi = h(xi) condition in certified accuracy. Again, we
emphasize the interpretation of the accuracies given an approximative certifica-
tion method M(·, h, ϵ) and attack model a(·, h, ϵ); The following statements are
guaranteed conclusions (denoted by →):

• High certified accuracy → it is provably hard to fool the classifier on the
dataset within the perturbation budget.

• Low adversarial accuracy → it is provably easy to fool the classifier on the
dataset within the perturbation budget, e.g. by the attacks computed by
a(·, h, ϵ).

The following results leave room for interpretation (denoted by ⇝):

• Low certified accuracy ⇝M(·, h, ϵ) could not certify the samples on the
dataset within the perturbation budget, so either, the samples are actually
not robust or the approximation of M(·, h, ϵ) is too loose.

• High adversarial accuracy ⇝ a(·, h, ϵ) could not find a way to fool the
classifier on the dataset within the perturbation budget, so either, the
samples are actually robust or the attack model generated weak attacks.

From a research perspective, we have the following trade-offs; high certified
accuracy guarantees a robust classifier but computing certified accuracy is hard.
Computing adversarial accuracy is easy given a reasonable attack model aϵ, but
it does not guarantee a robust classifier. Thus, research interests include:

• Certified robustness: developing effective and efficient ways to certify a
sample given a classifier and improving a given classifier to increase its
certified accuracy

• Adversarial robustness: developing strong attacks and developing defenses
against specific attacks

Remark 1 (Different norms). Instead of the euclidean norm, we can choose any
other norm on Rn. However, statements about certified and adversarial accuracy
will change. On, e.g., an image with values scaled to [0, 1], an adversary under
budget of ϵ = 1 w.r.t. ∥ · ∥2 roughly allows changing one pixel to any value but
ϵ = 1 w.r.t. ∥ · ∥∞ allows changing all pixels of the image to any values.

Remark 2 (Robustness and accuracy). Unfortunately, it has been observed
that higher robustness usually comes at the cost of lower clean accuracy when
the model size is fixed. On a positive note, some papers claim to have avoided
this trade-off, see e.g. Carlini et al. [2].
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0.1.2 Methods for Certified Robustness

Given some perturbation budget ϵ and a classifier f , we try to certify a sample x.
Since exact methods are not feasible yet, see above, we need to use approxima-
tions. In this case, not being able to certify x with some method does not imply
that f(x) cannot be certified at ϵ at all, it may just be that the approximation
of the method is too loose.

Randomized Smoothing. The current gold standard is randomized smooth-
ing by Cohen, Rosenfeld, and Kolter [5]. We smooth a given soft classifier f
with Gaussian noise, i.e.

g(x) = argmaxc∈Y P[f(x+ ϵ) = c] where ϵ ∼ N (0, σ2I). (5)

which turns g into a Lipschitz continuous function [25, Apdx. A]. For a given
point x, we can neatly determine the radius of the largest L2-ball that can be
certified around x as [5, Thm. 1]

R = ϵ =
σ

2
(Φ−1(pA)− Φ−1(pB)) (6)

where pA is the largest and pB the second largest probability of g(x) and Φ−1 is
the inverse standard Gaussian cdf. In particular, this radius is tight. To calcu-
late the radius, we need to approximate the values pA, pB by sampling and use
statistical tests to validate inequalities. Unfortunately, we need many samples
to obtain results with high statistical significance [5, c.f. Fig. 5]. Randomized
smoothing is the only method yielding good results on large models, but the
sampling makes certification resource expensive. The approach has also been
extended to other norms [32].

Bound Propagation. Instead of solving the optimization problem in eq. (2)
exactly, we compute upper bounds and check whether they satisfy the inequal-
ity. Considering the L∞ norm and ReLU feedforward NNs, a simple and fast
method is Interval Bound Propagation (IBP) by Gowal et al. [10], where we se-
quentially propagate upper and lower bounds through the layers using linearity
of the neurons and simple properties of the activation functions. Although the
bounds are quite weak, simple implementation and fast running time make this
a competitive approach. Reluplex by Katz et al. [16] can also verify samples in
ReLU networks by splitting each ReLU activation into its two linear parts in two
separate variables and use the simplex algorithm that simultaneously optimizes
and matches the variables. This approach performs well for small networks but
is infeasible for large networks. Improving on Reluplex, newer methods like
DeepPoly by Singh et al. [28] are more scalable and precise but also make more
heavy use of optimization theory.

Lipschitz Continuity. The Lipschitz constant of a function expresses how
much the change of the output can be controlled by the change of the input.
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Definition 4. Define X = (Rn, ∥ ·∥X), Y = (Rm, ∥ ·∥Y ). A function f : X → Y
is locally Lipschitz continuous at x ∈ X if

∥f(x)− f(x′)∥Y ≤ LX→Y
x ∥x− x′∥X ∀x′ ∈ X (7)

for some LX→Y
x ≥ 0. f is Lipschitz continuous if

∥f(x)− f(x′)∥Y ≤ LX→Y ∥x− x′∥X ∀x, x′ ∈ X (8)

for some LX→Y ≥ 0. The smallest LX→Y
x that fulfills eq. (7) is the local Lipschitz

constant of f at x. The smallest LX→Y that fulfills eq. (8) is the Lipschitz
constant of f .

While f being (locally) Lipschitz continuous does not depend on the cho-
sen norms (all norms are equivalent in Rn), the values of the (local) Lipschitz
constants do. Lipschitz continuity naturally connects to certified robustness.

Proposition 1. [34, Prop. B.1] Let f be a soft classifier with Lipschitz constant
Lf w.r.t. ∥ · ∥p and h a hard classifier. We have

h(x+ δ) = h(x) for all ∥δ∥p ≤ c

L
margin(f(x)) (9)

where L ≥ Lf , c = 1/2 if p = ∞ and else c = p
√
2/2, and margin(·) is the

difference between the largest and second largest input values. For given x, we
can replace Lf by the local Lipschitz constant of f at x.

It remains to find the exact (local) Lipschitz constant Lf or good upper
bounds L. Finding exact Lipschitz constants turns out to be a NP-complete
problem [26, Thm. 2] and is practically feasible only for small models. Exact
methods for local Lipschitz constants include, e.g., the work of Jordan and Di-
makis [15] using mixed integer linear programming or the work of Shi et al. [27]
using bound propagation. Exact methods for global Lipschitz constants include
the work of Fazlyab et al. [7], that describe the estimation as a semi-definite
program. In general, producing accurate and fast estimation of (local) Lipschitz
constants that scale to large models is still very challenging, where local bounds
are tighter but costly to compute and global bounds are loose but more efficient
to compute. Since low Lipschitz constant implies good robustness, c.f. Propo-
sition 1, other works experimentally explore the influence of architecture, loss
function and optimizer on the Lipschitz constant [17] or design training regular-
isation terms using upper Lipschitz bounds [9]. Another line of work enforces a
low Lipschitz constant by design of the network, e.g. Zhang et al. [34] propose
SortNet that bound the spectral norm of the weight matrix while sorting the
layer inputs to maintain expressiveness.

0.2 Methods for Adversarial Robustness

Following Madry et al. [19], training robust classifiers can be characterized by
formulating the objective as saddle point problem

min
θ

E(x,y)∼D[max
∥δ∥<ϵ

L(θ, fθ(x+ δ), y)]. (10)
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Attacks try to find a good adversary within a given perturbation budget for
a given model, i.e. solve the inner maximization, and defenses try to train or
finetune a model to have low loss against adversarial attacks, i.e., solve the outer
minimization. Note that here, we framed an adversarial attack as targeting the
loss while we defined it in Definition 1 as targeting the decision of the classifier.
However, since the loss captures miss-classification, the definitions are essentially
the same. Hence, computing the inner maximization is NP-complete.

Adversarial Attacks. A straight-forward attack for the L∞ norm is

xt+1 = P{s|∥x−s∥<ϵ}(x
t + α sign∇xtL(θ, fθ(x

t), y)) (11)

where α is the step-size, x = x0 the clean input, and PS the projection onto a set
S. For α = ϵ, we call x1 fast gradient sign method (FGSM) and for t > 1, α ≤ ϵ,
we call xt projected gradient descent attack (PGD attack) [19, Ch. 2.1], since it
effectively performs projected gradient descent on the loss function only looking
at the sign of the gradient. Madry et al. [19] even argue, that PGD attacks are
the strongest attacks utilizing first order information. To build a comparable
and parameter-free baseline for evaluating adversarial accuracy, the parameter-
free ensemble of five different attacks -including parameter-free versions of PGD
attacks- AutoAttack has been developed by Croce and Hein [6] and is a metric
frequently reported. In general, we also distinguish white-box attacks, that
have full information of the network at their disposal and can, e.g., calculate
gradients, and black-box attacks, that can only access input and output of the
network.

Adversarial Defenses. An early proposed and still very effective defense is
adversarial training [8], that adds the loss of adversarial examples as regular-
ization to the clean training loss, i.e.

αL(θ, fθ(x), y) + (1− α) max
∥δ∥<ϵ

L(θ, fθ(x+ δ), y) (12)

where α ∈ [0, 1]. The maximum in eq. (12) can be lower approximated by any
adversarial attack, e.g. FGSM due to its fast computation. Instead of lower
approximating the minimum, we can also upper approximate the minimum by,
e.g., bound propagation yielding certified training. Models trained with certified
training will be able to better certify robustness of samples using that upper
bound. For a blended version of certified and adversarial training see the work
of Müller et al. [21].

The development of defenses has started a cat-and-mouse game of developing
defenses that defend against some attacks but are again broken by stronger at-
tacks [5, Ch. 2]. This has led to evaluating adversarial robustness with adaptive
attacks, that consider the full information about the model and its defense to
develop attacks adapted to the defense. However, Tramer et al. [30] has found
that even adversarial accuracy with adaptive attacks can be very misleading
by developing well-thought adaptive attacks for several published defenses that
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substantially reduced adversarial accuracy compared to the reported values of
the adaptive attacks used in the papers.

Adversarial Purification Another idea is adversarial purification, that tries
to remove adversarial noise with some denoiser before inputting the cleaned
image into the classifier. Nie et al. [22] purified adversaries using pre-trained
diffusion models by performing t steps forward and then t steps backward dif-
fusion, where t is a hyperparameter.

0.3 Robust Out-Of-Distribution Detection

Background: out-of-distribution detection. When training models, we
assume that the data to be modeled follows some (unknown) distribution Din.
Hendrycks and Gimpel [13] found that samples from outside this distribution,
called out-of-distribution (OOD) samples, can be assigned high probability by
trained classifiers. To give an example, if we train a classifier to distinguish cats
and dogs but feed it an image of a frog, the latter is out-of-distribution, but
may be classified as cat or dog with high probability. Hence, the classifier does
not know when it not knows. As a simple but effective method to detect OOD
samples, Hendrycks and Gimpel [13] propose thresholding themaximum softmax
probability (MSP), where a high MSP implies in-distribution and a lower MSP
out-of-distribution. This follows the intuition that the probabilities being equal
implies that the classifier is least ”confident” about its prediction and thus, the
sample might be OOD. Moreover, outlier exposure (OE) [14] proposes to add a
regularization term computed from any OOD dataset Dout during training to
obtain OOD aware classifiers, i.e.

min
θ

E(x,y)∼Din
[L(θ, fθ(x), y) + λEx′∼Dout

[LOE(θ, fθ(x
′), fθ(x), y)]] (13)

where λ > 0 and LOE depends on the OOD detection to be trained for, e.g.
cross-entropy of fθ(x

′) to the uniform distribution over all classes and neglecting
fθ(x), y. In this case, we can write

min
θ

E(x,y)∼Din
[L(θ, fθ(x), y)] + λEx′∼Dout

[LOE(θ, fθ(x
′))]. (14)

Many other methods to detect out-of-distribution samples and train out-of-
distribution-aware classifiers have been proposed, for an overview see [33].

Methods for Robust OOD. It seems natural to ask whether OOD detection
is robust, i.e., whether we can adversarially attack an in-distribution sample to
make a classifier predict it as out-of-distribution or vice versa. Adversarial
confidence enhancing training (ACET) [12] proposed the loss

min
θ

E(x,y)∼Din
[L(θ, fθ(x), y)] + λE(x,y)∼Dout

[max
∥δ∥<ϵ

LOE(θ, fθ(x+ δ))], (15)

where LOE is the cross-entropy to the uniform distribution over all classes and
the maximization is approximated by FGSM. In a slightly different setting,
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where the soft classifier f has an additional output class C+1 for OOD samples,
adversarial training with informative outlier mining (ATOM) [3] essentially used
the same loss as ACET but with LOE being the cross entropy loss with the target
fixed to C + 1. The main new idea is to only compute the regularization term
in eq. (15) for a fraction of the outliers with the lowest predicted probability
fC+1, i.e. the most informative outliers, yielding substantial improvements.
[4] combined adversarial training and outlier exposure to train a binary OOD
detector G that classifies a sample with 1 for OOD and 0 else with

min
θ

Ex∼Din [max
∥δ∥<ϵ

1(G(x+ δ) = 0)] + Ex∼Dout [max
∥δ∥<ϵ

1(G(x+ δ) = 1)], (16)

but only obtained slight improvements while proposing no entirely new tech-
niques. Note, that all of the above methods are empirically motivated and
evaluated. Meinke, Bitterwolf, and Hein [20] combine a provably robust binary
OOD detector with a robust in-distribution classifier to obtain a provably robust
OOD-aware classifier.

0.4 Robustness to Semantic Perturbations

So far, we have looked at norm-bound adversaries, c.f. Definition 1. Semantic
perturbations have no rigorous mathematical definition, but usually refer to per-
turbations that preserved human-observed semantics/meaning of the input [18,
Ch. 2]. For images, examples include rotation, brightness, and Gaussian blur.
Semantic perturbations usually have low-dimensional parameter spaces, e.g. for
rotation we only have the rotation angle as parameter, and large changes in the
Lp norms that are difficult be verified by the Lp-bound methods considered in
Section 0.1. Moreover, they usually are of high practical interest.

Definition 5 (Certified Semantic Robustness). [18, Ch. 3.1] Let h : X → Y be
a hard classifier and Z ⊂ Rp the parameter space of a semantic perturbation
Φ : X × Z → X . We say x ∈ X is robust for S ⊂ Z w.r.t. Φ if

h(x) = h(Φ(x, α)) ∀α ∈ S. (17)

Similarly as before, we can define empirical or adversarial semantic robust-
ness. Geometric transformations are special semantic perturbations that sam-
ple new pixel values on a transformed grid from the original image, where pixel
values are eventually interpolated, see ??. They include rotation and scaling.
Certifying semantic robustness for perturbations that include interpolation er-
rors, e.g. rotation, is “hard both analytically and computationally” [18, p. 4].
Approaches include DeepG [1], that compute a convex relaxation of geometric
perturbations that can be fed into any verifier, TSS [18], a unified framework for
semantic perturbations, and GSmooth [11], that utilizes randomized smoothing.
Effective and efficient geometric adversarial attacks can be generated by Wang
et al. [31], that utilize an algorithm from Lipschitzian optimization theory.
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0.5 The Bigger Picture: What do Neural Networks actu-
ally learn?

We have seen that we can easily fool a neural network with humanly inconceiv-
able changes (adversaries) or inputs from completely different domains (OOD
detection). Moreover, it has been observed that adversarial examples generalize
across different architectures [8] and it has been proven that ReLU networks
are always over-confident far from the training data [12]. On another note,
it has been observed that stronger models with more parameters, like vision
transformers, are more robust out-of-the-box learners [23] and that strong dif-
fusion models can remove some adversarial attacks [22]. It seems that stronger
models better ”understand” the concepts that they are learning, however, we
can still develop attacks that fool them. All of this hints at the fact, that we
do not really understand what current SOTA models actually learn. Although
vulnerability to adversarial attacks an OOD samples might decrease with larger
model capacity, pointing out and combating these weaknesses is an important
contribution to improving the security and reliability of neural networks.

0.6 Reading Recommendations to Get Started

The key papers I would recommend are; Szegedy et al. [29] to read the first paper
that introduces adversarial attacks, Madry et al. [19] to get a good intuition
of adversarial attacks and defenses in the saddle point formulation as well as
adversarial training, Cohen, Rosenfeld, and Kolter [5] to understand the current
SOTA method randomized smoothing, Hendrycks and Gimpel [13] to get an
introduction to OOD and Hendrycks, Mazeika, and Dietterich [14] to understand
OE as effective training procedure.

References

[1] Mislav Balunovic et al. “Certifying Geometric Robustness of Neural Net-
works”. In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[2] Nicholas Carlini et al. (Certified!!) Adversarial Robustness for Free! 2023.
arXiv: 2206.10550 [cs.LG].

[3] Jiefeng Chen et al. ATOM: Robustifying Out-of-distribution Detection Us-
ing Outlier Mining. 2021. arXiv: 2006.15207 [cs.LG].

[4] Jiefeng Chen et al. Robust Out-of-distribution Detection for Neural Net-
works. 2021. arXiv: 2003.09711 [cs.LG].

[5] Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified Adversarial
Robustness via Randomized Smoothing. 2019. arXiv: 1902.02918.

[6] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks. 2020. arXiv:
2003.01690 [cs.LG].

9

https://arxiv.org/abs/2206.10550
https://arxiv.org/abs/2006.15207
https://arxiv.org/abs/2003.09711
https://arxiv.org/abs/1902.02918
https://arxiv.org/abs/2003.01690


[7] Mahyar Fazlyab et al. Efficient and Accurate Estimation of Lipschitz Con-
stants for Deep Neural Networks. 2023. arXiv: 1906.04893 [cs.LG].

[8] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and Harnessing Adversarial Examples. 2015. arXiv: 1412.6572 [stat.ML].

[9] Henry Gouk et al. Regularisation of Neural Networks by Enforcing Lips-
chitz Continuity. 2020. arXiv: 1804.04368 [stat.ML].

[10] Sven Gowal et al. On the Effectiveness of Interval Bound Propagation for
Training Verifiably Robust Models. 2019. arXiv: 1810.12715 [cs.LG].

[11] Zhongkai Hao et al.GSmooth: Certified Robustness against Semantic Trans-
formations via Generalized Randomized Smoothing. 2022. arXiv: 2206.
04310 [cs.LG].

[12] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why
ReLU networks yield high-confidence predictions far away from the train-
ing data and how to mitigate the problem. 2019. arXiv: 1812 . 05720

[cs.LG].

[13] Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting Misclassified
and Out-of-Distribution Examples in Neural Networks. 2017. arXiv: 1610.
02136 [cs.NE].

[14] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep Anomaly
Detection with Outlier Exposure. 2019. arXiv: 1812.04606 [cs.LG].

[15] Matt Jordan and Alexandros G. Dimakis. Exactly Computing the Local
Lipschitz Constant of ReLU Networks. 2021. arXiv: 2003.01219 [stat.ML].

[16] Guy Katz et al. Reluplex: An Efficient SMT Solver for Verifying Deep
Neural Networks. 2017. arXiv: 1702.01135.

[17] Grigory Khromov and Sidak Pal Singh. Some Fundamental Aspects about
Lipschitz Continuity of Neural Network Functions. 2023. arXiv: 2302.
10886 [cs.LG].

[18] Linyi Li et al. TSS: Transformation-Specific Smoothing for Robustness
Certification. 2021. arXiv: 2002.12398 [cs.LG].

[19] Aleksander Madry et al. Towards Deep Learning Models Resistant to Ad-
versarial Attacks. 2019. arXiv: 1706.06083 [stat.ML].

[20] Alexander Meinke, Julian Bitterwolf, and Matthias Hein. Provably Robust
Detection of Out-of-distribution Data (almost) for free. 2022. arXiv: 2106.
04260 [cs.LG].

[21] Mark Niklas Müller et al. Certified Training: Small Boxes are All You
Need. 2023. arXiv: 2210.04871 [cs.LG].

[22] Weili Nie et al. Diffusion Models for Adversarial Purification. 2022. arXiv:
2205.07460 [cs.LG].

[23] Sayak Paul and Pin-Yu Chen. Vision Transformers are Robust Learners.
2021. arXiv: 2105.07581 [cs.CV].

10

https://arxiv.org/abs/1906.04893
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1804.04368
https://arxiv.org/abs/1810.12715
https://arxiv.org/abs/2206.04310
https://arxiv.org/abs/2206.04310
https://arxiv.org/abs/1812.05720
https://arxiv.org/abs/1812.05720
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1812.04606
https://arxiv.org/abs/2003.01219
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/2302.10886
https://arxiv.org/abs/2302.10886
https://arxiv.org/abs/2002.12398
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2106.04260
https://arxiv.org/abs/2106.04260
https://arxiv.org/abs/2210.04871
https://arxiv.org/abs/2205.07460
https://arxiv.org/abs/2105.07581


[24] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite re-
laxations for certifying robustness to adversarial examples. 2018. arXiv:
1811.01057 [cs.LG].

[25] Hadi Salman et al. Provably Robust Deep Learning via Adversarially Trained
Smoothed Classifiers. 2020. arXiv: 1906.04584 [cs.LG].

[26] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neu-
ral networks: analysis and efficient estimation. 2019. arXiv: 1805.10965
[stat.ML].

[27] Zhouxing Shi et al. Efficiently Computing Local Lipschitz Constants of
Neural Networks via Bound Propagation. 2022. arXiv: 2210.07394 [cs.LG].

[28] Gagandeep Singh et al. “An Abstract Domain for Certifying Neural Net-
works”. In: Proc. ACM Program. Lang. 3.POPL (2019). doi: 10.1145/
3290354. url: https://doi.org/10.1145/3290354.

[29] Christian Szegedy et al. Intriguing properties of neural networks. 2014.
arXiv: 1312.6199.

[30] Florian Tramer et al. On Adaptive Attacks to Adversarial Example De-
fenses. 2020. arXiv: 2002.08347 [cs.LG].

[31] Fu Wang et al. Towards Verifying the Geometric Robustness of Large-scale
Neural Networks. 2023. arXiv: 2301.12456 [cs.LG].

[32] Greg Yang et al. Randomized Smoothing of All Shapes and Sizes. 2020.
arXiv: 2002.08118 [cs.LG].

[33] Jingkang Yang et al. Generalized Out-of-Distribution Detection: A Survey.
2022. arXiv: 2110.11334 [cs.CV].

[34] Bohang Zhang et al. Rethinking Lipschitz Neural Networks and Certified
Robustness: A Boolean Function Perspective. 2022. arXiv: 2210.01787
[cs.LG].

11

https://arxiv.org/abs/1811.01057
https://arxiv.org/abs/1906.04584
https://arxiv.org/abs/1805.10965
https://arxiv.org/abs/1805.10965
https://arxiv.org/abs/2210.07394
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2002.08347
https://arxiv.org/abs/2301.12456
https://arxiv.org/abs/2002.08118
https://arxiv.org/abs/2110.11334
https://arxiv.org/abs/2210.01787
https://arxiv.org/abs/2210.01787

	Certified and Adversarial Robustness
	Definitions and Intuition
	Methods for Certified Robustness

	Methods for Adversarial Robustness
	Robust Out-Of-Distribution Detection
	Robustness to Semantic Perturbations
	The Bigger Picture: What do Neural Networks actually learn?
	Reading Recommendations to Get Started

