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Abstract

Objective: Understanding fluctuations in seizure severity within individuals
is important for determining treatment outcomes and responses to therapy, as
well as assessing novel treatments for epilepsy. Current methods for grading
seizure severity rely on qualitative interpretations from patients and clinicians.
Quantitative measures of seizure severity would complement existing approaches
to electroencephalographic (EEG) monitoring, outcome monitoring, and seizure
prediction. Therefore, we developed a library of quantitative EEG markers that
assess the spread and intensity of abnormal electrical activity during and after
seizures.

Methods: We analyzed intracranial EEG (iEEG) recordings of 1009 seizures
from 63 patients. For each seizure, we computed 16 markers of seizure severity
that capture the signal magnitude, spread, duration, and postictal suppression of
seizures.

Results: Quantitative EEG markers of seizure severity distinguished focal versus
subclinical seizures across patients. In individual patients, 53% had a moderate to
large difference (rank sum r > .3, p < .05) between focal and subclinical seizures
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1 | INTRODUCTION

Seizure severity is an important clinical measure for pa-
tients with epilepsy that is strongly correlated with quality
of life.' However, the best approach for measuring seizure
severity remains unclear. Existing scales for measuring
seizure severity, including the National Hospital Seizure
Severity Scale (NHS3),>* the Liverpool Seizure Severity
Scale,* and the Seizure Severity Questionnaire,’ are com-
posed of questions on various aspects of seizures including
warnings, ictal and postictal phenomena, and resultant
injuries. Most scales separate seizures by their clinical
classification® to reflect differences in severity across dif-
ferent seizure types.

A primary shortcoming of existing measures of seizure
severity is their reliance on patient or carer recollection.®
For example, a patient's recollection of their seizure may
be impaired as a result of the seizure itself.”® It is hence
challenging to assess changes in severity from seizure to
seizure in an unbiased manner for the full range of a pa-
tient's seizures. Objective, quantitative tools for measur-
ing severity of individual seizures are therefore needed to
understand variations in seizures on different timescales.

Electroencephalography (EEG)-based severity markers
are a potential approach to quantifying seizure severity.
Past studies have used EEG features such as ictal dura-
tion® and spatial synchronization'® as proxies for seizure
severity. The anatomical spread of seizure activity has also
been suggested as a measure of seizure severity.® It is yet
to be determined how such measures compare and which
to use for each individual patient.

Moreover, various seizure features, which are di-
rectly associated with severity, fluctuate over time. For
example, focal seizures are more likely to generalize in
sleep,'! particularly in temporal lobe epilepsy (TLE)."2
The extent of postictal suppression also depends on the
time of day of seizure occurrence.'*'* Subclinical seizures

Epilepsia

in three or more markers. Circadian and longer term changes in severity were
found for the majority of patients.

Significance: We demonstrate the feasibility of using quantitative iEEG mark-
ers to measure seizure severity. Our quantitative markers distinguish between
seizure types and are therefore sensitive to established qualitative differences in
seizure severity. Our results also suggest that seizure severity is modulated over
different timescales. We envisage that our proposed seizure severity library will
be expanded and updated in collaboration with the epilepsy research community
to include more measures and modalities.

computational neurophysiology, electroencephalography (EEG), seizure severity

Key Points

« Existing measures of seizure severity can be
complemented by objective quantitative mark-
ers of seizure EEG severity

« EEG-based markers of seizure severity can dis-
tinguish clinically distinct seizure types

« Quantitative severity markers can be used to
investigate fluctuations in seizure severity over
time in individual patients

(without clinical symptoms) also follow circadian pat-
terns.’> Furthermore, it has been shown that "seizure
spatiotemporal evolutions"® and ictal onset dynamics'’
differ within individuals on circadian or longer times-
cales. Therefore, monitoring fluctuations in seizure sever-
ity could lead to a better understanding of an individual's
epilepsy.

To objectively quantify seizure severity, we provide an
expandable library of interpretable EEG-based markers of
seizure severity. As a way of validation, we test whether
seizure severity markers distinguish clinically distinct sei-
zure types'® with known differences in severity. We further
show that markers of seizure severity are patient-specific.
As a proof of principle, we further demonstrate fluctua-
tions in severity over circadian or longer timescales.

2 | MATERIALS AND METHODS
2.1 | Patient selection and data
acquisition

This retrospective study analyzed iEEG recordings of
1009 seizures across 63 patients undergoing presurgical
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evaluation for medically refractory epilepsy. Seizure types
were labeled by clinical teams according to International
League against Epilepsy (ILAE) classifications: 656 focal,
of which 232 were focal aware, 176 were focal impaired
awareness, and 248 were uncategorized; 323 subclinical;
six focal to bilateral tonic—clonic (FTBTC). Within this
work, seizures with focal onset, clear clinical correlates,
and no propagation to the contralateral hemisphere were
labeled as focal seizures. Section S2 provides more details
on the patient cohort.

Data were collected from two epilepsy monitoring units
(EMUs) in the UK: University College London Hospitals
and Glasgow, with 49 and 14 patients, respectively.
Anonymized intracranial EEG (iEEG) recordings were
analyzed following approval of the Newcastle University
Ethics Committee (reference number 17042/2021).
Electrographic seizure start and termination were labeled
by clinical teams. Ictal periods were extracted with 2min
of pre- and postictal activity.

2.2 | iEEG preprocessing

We first downsampled all EEG to 256 Hz. Preictal noise
was detected using an iterative noise detection algorithm
and visual inspection; noisy channels were removed from
all seizures (see Methods S3.1). The iEEG was rerefer-
enced to a common average reference, notch filtered at
50 and 100Hz (2-Hz window) to remove line noise, and
band-pass filtered between .5 and 100Hz (fourth order,
zero phase shift Butterworth).

2.3 | Seizure markers

The selection of markers was inspired by seizure detection
literature (e.g., Alotaiby et al.,’ Guo et al.,”° Birjandtalab
et al.”?"). To quantify different types of features, our li-
brary of objective seizure severity markers has three main
branches:

« "Peak” markers to measure the peak level of activity that
occurs during a seizure;

 "Spatial” markers to summarize spread of ictal activity
across recording channels; and

 "Suppression” markers to evaluate postictal suppression.

Ictal duration was also included as an additional sever-
ity marker.?? Table S3.1 gives detailed mathematical defi-
nitions of all markers.

Common notation is used throughout the definition of
markers; x is the time series for one channel, & is the time
point, N is the number of time points in the segment, C is

the number of recording channels, and T is the number of
segments in the ictal period.

2.3.1 | Peak markers
The maximum level of activity in the ictal phase was es-
timated using peak markers of the iEEG features: line
length,”** energy, and band-power® (in & [1-4Hz], 6
[4-8 Hz], a [8-13 Hz], B [13-30 Hz], low-y [30-60 Hz], and
high-y [60-100 Hz] bands), each of which have previously
been used within seizure detection algorithms.***’ Each
seizure recording (Figure 1A) was separated into 1-s ep-
ochs with no overlap from which each peak marker was
calculated, resulting in eight T x C matrices (Figure 1B).
For each severity marker (i.e., each matrix) we first
summarized markers across time; for each recording
channel, the 95th percentile of each marker was calcu-
lated (Figure 1C). The maximum value across channels
was then used as the estimated peak activity of the sei-
zure (Figure 1D). As expected, markers differ across sei-
zure types and patients (Figure 1E). Once summarized
over time (by the 95th percentile of each channel across
time) and across channels (maximum value), we log-
transformed the measures to normalize their distributions.

2.3.2 | Spatial markers

The extent of the spread of ictal activity across recording
channels was captured through spatial markers. For each
channel, baseline (preictal) and ictal recordings were di-
vided into 1-s, nonoverlapping epochs, from which each
of eight features (line length, energy, band-powers in six
frequency bands) were calculated. Seizure activity was
algorithmically detected based on abnormality (median
absolute deviation [MAD] scores) relative to the preictal
period in each of the eight feature matrices. For each win-
dow per channel, an MAD score >5 in any of the eight
features suggested potential seizure activity. An addi-
tional step (see Appendix S3.4 for details) prevented spu-
rious nonseizure activity from being detected (e.g., caused
by noise or a short spike). This algorithm yielded a binary
map identifying channels and time windows with seizure
activity during the ictal period. We term this matrix the
"imprint" of the seizure (see Figure 2A,C for EEGs and
B,D for corresponding imprints).

Four markers were derived from the seizure imprint:
the proportion of channels with seizure activity at any
point in the ictal phase (Figure 2C, example patients), the
proportion of channels with simultaneous seizure activity
at the point of maximum recruitment (Figure 2D, example
patients), the time taken from seizure onset to the time of
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FIGURE 1 Visualizing the workflow for calculating peak markers for example patient U22. (A) Intracranial electroencephalographic
(EEG) traces for a subclinical (orange) and focal (purple) seizure in an example patient, with a subsection of recording channels for
visualization. (B) Heat maps of the line length marker in 1-s epochs for seizures in A. (C) Ninety-fifth percentile of line length measures for
each channel across time. (D) Bee-swarm representation of the same data as C, also for a few more example seizures in this patient. Gray
arrows point to the maximum value across channels; this is the peak value for the seizure. (E) Log-transformed peak line length values
(maximum channel value across 95th percentiles), as indicated by gray arrows in D in five example patients; each data point represents a

seizure. Sz, seizure.
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FIGURE 2 Visualizing spatial markers for example patient U22. (A, C) Intracranial electroencephalographic (EEG) traces of an example
focal/subclinical seizure with a subset of recording channels. (B, D) Corresponding binary map of seizure imprint (yellow indicates seizure

activity, green no seizure activity) across time in the same subset of channels as in A and C. (E) Swarm plot of the proportion of channels

with seizure activity at any point in the seizure for all seizures in five example patients. (F) Swarm plot of the proportion of channels with

seizure activity at the point of maximum recruitment for all seizures for five example patients.

maximum recruitment, and the proportion of the seizure
duration taken to reach maximum recruitment.

2.3.3 | Suppression markers

Duration and strength of postictal suppression was cap-
tured by our suppression markers. Signal range was com-
puted in .5-s nonoverlapping windows. For each channel,
postictal ranges were compared against the distribution of
preictal ranges. Ranges below the fifth percentile of the pre-
ictal range were labeled as suppressed (see Figure 3A for
a postictal EEG and 3B for its corresponding suppression
matrix). Periods of suppression were labeled as majority
suppression or partial suppression based on the propor-
tion of suppressed channels (Figure 3C). Durations of ma-
jority suppression and partial suppression (Figure 3D,E)
were calculated using a 2.5-s moving sum to account for
short spikes of activity in suppressed segments. Further
details are provided in Methods S3.5. The suppression du-
ration was computed as the time following seizure offset
with a 1-s buffer. A third suppression marker, suppres-
sion strength, was defined as the median proportion of

channels with suppression across the duration of the pos-
tictal recording. Although we analyzed 120s of postictal
activity, duration of suppression may have exceeded this
120s.? Therefore, suppression durations of 120s in the fol-
lowing should be understood as "at least 120s."

2.4 | Statistical analysis

Statistical analyses were then performed in RStudio.
Probability values were calculated for reference and visu-
alization, not to stratify patients for further analyses.

2.4.1 | Validating markers against ILAE
seizure classification

ILAE seizure classification®® was used as a validation for
seizure severity. Our main analyses compared focal ver-
sus subclinical seizures and focal aware versus impaired
awareness seizures; supplementary analyses are shown
comparing focal versus FTBTC seizures. Performance of
markers was assessed by how well they distinguish these
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FIGURE 3 Visualizing suppression markers for example patient U22. (A) Intracranial electroencephalographic (EEG) traces of example
subclinical (orange) and focal (purple) postictal segments in a subset of recording channels. (B) Corresponding binary maps of channels with

suppression (<5% of preictal activity levels) in the same subset of recording channels. (C) Proportion of suppressed channels across 120s of

postictal activity. Segments of majority suppression and partial suppression are highlighted. (D) Swarm plot of (log-transformed) majority

suppression duration for all seizures for five example patients. (E) Swarm plot of (log-transformed) partial suppression duration for all

seizures for five example patients.

seizure types. We applied two strategies for validation,
across and within patients, to separately assess perfor-
mance of markers in distinguishing clinically distinct sei-
zure types.

Across patients

For each marker, three hierarchical logistic regression
models were compared to assess marker and/or patient
effects. Specifically, we created a model considering only
random patient effects and two models considering both
fixed marker effects and random patient effects (random
intercept & random intercept and slope models). The fit of
each model was assessed using Akaike information crite-
rion, Bayesian information criterion, and deviance. Models
with poor fit were deemed inadequate and removed.
Assumptions of logistic regression models were checked
for each model individually. The quality of each model as
a classifier of seizure type was assessed through the area
under the curve (AUC) for receiver operating characteris-
tic curves with 100 decision thresholds. Performance was
assessed based on AUC thresholds (AUC > .7 is acceptable,
>.8 is excellent, and >.9 is outstanding).”’ Supplementary

analyses are shown for focal versus FTBTC seizures
(Table S4.3) and focal versus subclinical seizures in TLE
(Table S4.4) and eTLE (Table S4.5).

Within patients

Each marker's performance in distinguishing seizure types
for each patient was assessed using two-tailed Wilcoxon
rank sum tests. Patients were included in within-patient
validation if they had a minimum of five seizures, with
two or more seizures of each type. The distinction be-
tween markers of different seizure types was quantified
using the effect size (r) calculated as:

where Z is the Z-statistic and N is the total sample size. The
r value was bounded between zero and one, with values
closer to one indicating larger effects. It is common in the
literature to consider .1< r <.3 as a small effect, .3<r<.5as
a moderate effect, and r >.5 as a large effect.
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2.4.2 | Circadian and longer term
modulation of seizure severity

We additionally assessed circadian and longer term fluc-
tuations in seizure severity. For individual patients, we
assessed circadian fluctuations using rank circular-linear
correlation® using the cylcop R package.*! Probability
values were calculated through a permutation test with
1000 permutations. Inclusion criteria were that patients
must have 20 or more recorded seizures irrespective of
the frequencies of each seizure type. This threshold was
chosen based on performance of circular-linear correla-
tion on simulated data with varied sample sizes and noise.
Long-term fluctuations in severity were assessed using
Spearman rank correlation between markers and the time
since first recorded seizure.

2.5 | Code and data availability

The analysis code and data are available on Zenodo.
org (DOI: 10.5281/zenodo.7575874). The expandable li-
brary of severity markers is already available on GitHub
(https://github.com/cnnp-lab/seizure_severity_library),
and we invite contributions from the community.

AUC values of models comparing
focal and subclinical seizures for each
severity marker

(A)

Line length
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Random
Intercept
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3 | RESULTS

We computed each of the 16 proposed seizure sever-
ity EEG markers for all 1009 recorded seizures. We first
validated each marker by assessing performance in dis-
tinguishing different ILAE classification both across all
patient seizures and within each patient. However, we en-
visage additional uses of this library and, as an example,
demonstrate its potential ability to detect fluctuations in
seizure severity over time.

3.1 | Severity markers distinguish
between ILAE clinical seizure types across
patients and seizures

To validate our markers, we assessed their ability to
distinguish focal versus subclinical seizures and focal
seizures with and without impaired awareness across
patients. Specifically, for each of the 16 markers, we
compared seizure types across all patients using hierar-
chical mixed effects logistic regression models. Figure 4
displays the AUC values obtained for each model in
all markers when comparing focal versus subclini-
cal (A) and focal seizures with and without impaired

AUC values of models comparing
focal seizures with and without LoA
for each severity marker

DaaEag

0.5

0.92

Random
Intercept
and Slope

Random
Intercept

Random
Patient

FIGURE 4 Validating markers against International League against Epilepsy classification across patients. (A) Heat map of area under
the curve (AUC) values for hierarchical logistic regression models comparing focal and subclinical seizures. (B) Heat map of AUC values for
hierarchical logistic regression models comparing focal seizures with and without loss of awareness (LoA).
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awareness (B). There were clear patient differences in
the marker values; however, the majority of models
created with only patient effects were unacceptable
classifiers (AUC<.7 or model assumptions not met),
suggesting that between-patient differences alone did
not account for differences between focal and subclini-
cal seizures. In contrast, 14 severity markers yielded
excellent classifier performance with random intercept
models or random intercept and slope models. As sei-
zure duration is often used to assess seizure severity,**
we compared the performance of each marker against
the performance of duration in distinguishing seizure
types (see Figure S4.1C,D) using a bootstrapping proce-
dure (see Methods S3.6). When comparing focal versus
subclinical seizures, observed AUC values for all mark-
ers (except time and proportion of seizure to maximum
recruitment) were larger than most of the distribution
of AUC values for seizure duration. When comparing
focal seizures with and without impaired awareness, all
peak markers except theta and alpha band-powers, and
all spatial markers outperformed seizure duration.

Appendix S4.1 shows additional results comparing
focal versus FTBTC seizures and comparing focal versus
subclinical seizures in TLE and eTLE. When comparing
focal versus FTBTC seizures, all markers created excellent
or outstanding classifiers through random intercept mod-
els. We further subdivided patients into those with TLE
and those with eTLE, from which we repeated across-
patient analyses for focal versus subclinical seizures.
When separating patients into TLE and eTLE only, sam-
ple sizes were 360 and 595 seizures, respectively. For TLE
patients, five markers showed excellent or outstanding
performance in random intercept models (Table S4.4). For
eTLE patients, all markers had excellent or outstanding
performance in random intercept and/or random inter-
cept and slope models (Table S4.5).

3.2 | Severity markers distinguish
between ILAE clinical seizure types
within patients

We next validated our markers by quantifying distinctions
between ILAE seizure types within individual patients.
We analyzed effect sizes between seizure types using
Wilcoxon rank sum test r-values. Using our inclusion cri-
teria, we could compare focal and subclinical seizures in
15 patients. Patients included in this analysis did not differ
in demographics (sex, age, disease duration, and epilepsy
diagnosis) relative to the entire cohort. Majority suppres-
sion duration could not be validated, as many patients
did not have sufficient seizures with periods of majority
suppression.

Epilepsia

Moderate to large effects (r >.3, p <.05) in three or
more markers were found for eight of the 15 included
patients (53.3%). The heat maps of r-values are shown
in Figure 5A,B. Figure 5B shows a heat map of r-values
only where p <.05. The number of focal and subclini-
cal seizures recorded per patient varied (see Figure 5C).
Effects were notably higher in four patients, all of
whom were TLE patients, supporting that performance
of markers is likely patient-specific. We investigated
the effect of various other patient metadata (sex, TLE/
eTLE, surgical outcome, disease duration, age, number
of recording channels, and number of recorded sei-
zures) on marker performance (see Table S4.6). Most
notably, there was a large effect between spatial mark-
ers for patients with TLE compared to eTLE, but none
of the other patient features showed consistent or note-
worthy effects. Comparing performance of our markers
against seizure duration, in five patients (33%), dura-
tion alone was not a useful marker of seizure severity
(r <.3, p >.05). However, in each of these patients, at
least three other markers were useful (r >.3, p <.05) in
distinguishing focal and subclinical seizures.

3.3 | Seizure severity changes across
different timescales

Finally, we used our markers to capture fluctuations in
seizure severity on circadian and longer timescales in 15
patients. Figure 6A shows example daytime and night-
time seizure iEEG traces from the same patient, U14. In
U14, seizures occurring at different times of day appeared
to have different characteristics; for example, line length
and suppression strength differences are higher in noctur-
nal seizures (Figure 6B,C). The association between these
markers and seizure times was measured using circular-
linear correlation.®® Eight patients (66.7%) had correla-
tions with p >.2 and p <.05 for at least three markers.

We additionally asked whether our severity markers
also changed over the span of each patient's recording.
Figure 6D shows the absolute Spearman rank correlation
between two example markers and the time of each seizure
relative to the start of the recording. This measure cap-
tures the strength, but not the direction, between marker
values and the time of seizure occurrence. In eight of 15
patients (53.3%), at least three markers had correlations
with p >.3 and p <.05 with the amount of time elapsed
since the start of the recording. Correlation coefficients
for all markers are shown in Tables S4.7-S4.10. Moderate
to strong correlations can be seen in a wide range of mark-
ers and patients; thus, we conclude that circadian and lon-
ger term changes in EEG severity can be detected in the
majority of patients.

9SU92I7 suowwo) aAneal) ajqedijdde ayy Agq paultanohb aie sa|ollle YO ‘9sh Jo sa|nJ 10} Aieiqi] auljuQ A3|IM UO (Suollipuod-pue-swiadl/wod As|im-Ateiqijauljuo//:sdiy)
SuUOIIPUOY pue swid) Byl 89S ‘[€20¢/zL/SL] uo Ateaqr] auluQ Asjim ‘Auewag auelyoo) Ag "GzGL1da/LLLL OL/1op/wod As|im Alelqijauljuo//:sdily woly papeojumod ‘v ‘€20 'L9LL8ZSL



GASCOIGNE ET AL.

* | Epilepsia

(A) Wilcoxon rank sum test effect sizes for all patients

(B) Wilcoxon rank sum test effect sizes for all patients
(r values with p<.05 only)
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FIGURE 5 Validating markers against International League against Epilepsy (ILAE) classification on a within-patient basis. (A)
Wilcoxon rank sum test r-values obtained through comparing focal and subclinical seizures. Each row is a patient, and each column is

a marker. Patients were sorted by descending r-values within the temporal lobe epilepsy (TLE) and extra-temporal lobe epilepsy (eTLE)
groups. (B) Same as in panel A, filtered by p <.05. (C) Paired bar chart displaying counts of focal and subclinical seizures for each patient

included in within-patient validation.

We were limited by the time spent in the EMU; there-
fore, our findings on modulation are proof-of-concept.
These results should be interpreted as evidence that our
markers could be used to capture fluctuations in severity.

4 | DISCUSSION

We evaluated 16 objective quantitative markers of sei-
zure severity derived from iEEG recordings of patients
with refractory focal epilepsy. Our goal was to offer a
collection of markers that can be used as output meas-
ures for clinical trials, tracking fluctuations in seizure
severity, or other applications. Our results demonstrated
that almost all severity markers could distinguish focal

versus subclinical seizures across our cohort of 63 pa-
tients. Importantly, marker performance was patient-
specific, indicating that different groups of patients are
best evaluated with a subset of our proposed markers;
thus, our approach of providing a severity library for fu-
ture work to draw from is an important contribution.
We also found that severity fluctuated on circadian and
longer term timescales in a patient-specific manner,
supporting the use of EEG-based severity markers to in-
vestigate temporal modulation of seizure severity. Our
work may therefore also facilitate personalized, time-
adaptive treatments or enhance our understanding of
the chronobiology of seizures.

Existing scales of seizure severity have been used as
outcome measures in clinical trials.3?3 However, scales
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FIGURE 6 Detecting circadian

and longer term modulation of

seizure severity. (A) Intracranial
electroencephalographic recordings for

a daytime (blue) and night-time (pink)
seizure from example patient U14. (B)
Plot of marker against time of day for line
length and postictal suppression strength.
Pink background indicates evening/
night, whereas blue background indicates
daytime. (C) Dot plot of scaled circular—
linear correlation coefficients between
markers and time of day across included
patients. Probability values <.05 obtained
through permutation tests are highlighted
in black. (D) Dot plot of absolute
Spearman rank correlation coefficient
between markers and time in epilepsy
monitoring unit (EMU) across included
patients. Correlations with p-values <.05
are highlighted in black.
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depend on patients’ ability to recall seizures over weeks,*®
leading to concern over their reliability. Many scales also
focus on patient risk rather than objective severity. For ex-
ample, the NHS3 stipulates that seizures occurring in bed
are automatically scored zero for falls, potentially under-
estimating their electrographic and neurobiological sever-
ity. No existing scales assess individual seizure severity in
an objective quantitative manner, making small changes
in severity difficult to capture. Our library of quantitative
EEG markers addresses these limitations, providing a
complementary approach for measuring and understand-
ing seizure severity.

Our approach to validating our markers was to com-
pare two seizure types that have obvious distinctions in
terms of their neurobiological and symptomatic severity:
namely, subclinical versus focal seizures. The proportion

Circular-linear D Spearman’s p Spearman’s p

of subclinical versus focal seizures within these data (323
vs. 656) agrees with previous literature,*® suggesting that
our seizure type labels are not biased. Previous literature
suggests that subclinical and focal seizures have differ-
ent EEG features,*” even within the same patient,* thus
making it a good standard to compare to. However, our
proof-of-principle validation against seizure type is only
one of many possible standards; future work could test
other standards that are tailored to the research question.

One main finding of this work was that the perfor-
mance of seizure severity markers derived from iEEG re-
cordings is highly patient-specific. Peak markers tended
to perform well, as did some spatial markers (proportions
of channels measures). The remaining markers varied in
their performance, even among patients with better dis-
tinctions based on other markers. Results suggest that
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spatial markers have the highest performance in distin-
guishing focal seizures with and without impaired aware-
ness. We suggest testing the entire library of markers for
each new patient to determine which, if any, are the most
appropriate for the desired application.

Different aspects of seizure severity have been repeat-
edly reported to follow circadian, sleep/wake, and longer
timescale modulations. For example, secondary gener-
alization and postictal suppression occur more often in
seizures arising from sleep.'"'** Subclinical seizures
are also reported to follow a circadian pattern.!® Recent
studies also reported modulations at circadian and longer
timescales within many patients in terms of seizure elec-
trographic evolutions®®* and other seizure properties.*
In agreement with previous literature, we found evidence
that EEG-based seizure severity markers are modulated on
circadian and longer timescales, although the effect size of
the modulation is patient-specific and weak in some pa-
tients. We suggest that, similar to previous work,*® captur-
ing data of the potential modulations and directly relating
those to the severity markers in a multivariate model may
be insightful.

4.1 | Limitations and future work

The patients included in this study are presurgical can-
didates with refractory focal epilepsy; therefore, our li-
brary needs to be expanded and tested in other epilepsy
syndromes. The use of iEEG allows for good signal qual-
ity but does not capture activity beyond a small part of
the brain. Electrode placement was determined by clini-
cal need, and therefore the location of electrodes var-
ied across patients. This variability means that spatial
markers do not capture the same information in differ-
ent patients, and thus hierarchical statistical approaches
are needed to compare markers across patients. Future
work could use simultaneous scalp EEG and iEEG to
validate markers of spread based on iEEG in different
anatomical regions. Within this work, spatial markers
based on activity in regions of interest (ROIs) rather
than individual channels was considered; unfortunately,
electrode location was not available for all patients. We
opted to maintain our channel-based spatial and sup-
pression markers to maintain our sample size. Further
research including a larger cohort with available elec-
trode location information is required to confirm that
spatial markers derived from ROIs could be used to cap-
ture seizure severity. Our methods could be extended to
subscalp EEG with some alterations to account for lower
spatial coverage. Although the lower coverage presents
a challenge, previous studies suggest encouraging find-
ings. For example, Parvez and Paul*! predicted seizure

occurrence using only six recording channels per pa-
tient. Furthermore, recordings from only 16 locations
on the surface of the brain captured critical slowing,*
giving evidence that alterations in EEG around seizures
can be captured with few electrodes. Extension of our
library to scalp EEG and other modalities is planned,
and with our open code base on GitHub, we welcome
contributions from the community.

As recordings took place in EMUs, patients were also
under nonnormal conditions during recordings; anti-
seizure medications are often tapered, and patients are
potentially under an increased amount of stress. Future
work might use continuous recordings to capture the full
range of interictal brain dynamics to better estimate spa-
tial and suppression properties of seizures. Future work
should also investigate the three-way relationship be-
tween severity markers, seizure type, and circadian influ-
ences. Furthermore, electrographic activity can fluctuate
for weeks following electrode implantation“; however,
the preictal baseline that we applied for spatial and sup-
pression markers may render those markers less sensitive
to such fluctuations. Future work needs to disentangle
the biological, technological, and pathological influences
on EEG biomarkers; this remains an open challenge for
various applications. Such fluctuations may have influ-
enced the results of this work, especially in modulation
analyses. Regardless, our results remain meaningful as a
proof-of-concept that our markers can be used to detect
fluctuations in ictal electrographic activity and, by exten-
sion, seizure severity.

5 | CONCLUSIONS
In conclusion, we propose 16 EEG markers of seizure se-
verity that can be used to complement existing measures.
Most markers were validated against ILAE classifica-
tion on an across-patient basis. Marker performance, as
measured by their ability to distinguish seizure types and
capture fluctuations in seizure severity, is strongly patient-
specific. We also detected circadian and longer timescale
fluctuations in seizure severity, which may be relevant for
a range of applications including capturing treatment re-
sponse and seizure forecasting.***® Qur library therefore
contributes to ongoing efforts in characterizing seizures
over time, seizure prediction, and generally designing
novel, personalized treatment plans that manage and mit-
igate severe seizures.
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